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Trade-offs are central to life-history theory but
difficult to document. Patterns of phenotypic
and genetic correlations in rhesus macaques,
Macaca mulatta—a long-lived, slow-reproducing
primate—are used to test for a trade-off between
female age of first reproduction and adult
survival. A strong positive genetic correlation
indicates that female macaques suffer reduced
adult survival when they mature relatively
early and implies primate senescence can be
explained, in part, by antagonistic pleiotropy.
Contrasts with a similar human study implicate
the extension of parental effects to later ages as
a potential mechanism for circumventing female
life-history trade-offs in human evolution.
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1. INTRODUCTION
Trade-offs among traits that contribute to lifetime
fitness are ubiquitous features of models of life-history
evolution (Stearns 1989). Trade-offs occur when
organisms pay a fitness cost, such as delaying sexual
maturation, to gain a fitness benefit, such as increased
chances of survival later in life. A genetic correlation
results when alleles at a locus influence both traits
involved in a trade-off (Roff 2002). Despite the
importance of trade-offs to life-history theory, they
have been notoriously difficult to document (Roff &
Fairbairn 2007). One reason for this problem is that
although trade-offs should result from the partitioning
of finite resources, environmental variation in resource
acquisition can mask the genetic patterns expected
from trade-offs (van Noordwijk & de Jong 1986).
Phenotypic correlations between life-history traits are
thus less likely to reflect trade-offs than their genetic
correlations (Reznick 1985).

The characteristic ability of humans to control the
resources available within social groups (Kaplan &
Robson 2002; Lee 2008) complicates the empirical
exploration of trade-offs in human populations.
Also, quantitative genetic approaches have rarely
been applied to human life-history variation and
only in recent agricultural or industrialized settings
(e.g. Westendorp & Kirkwood 1998; Kirk et al. 2001;
Pettay et al. 2005). Furthermore, the kinds of
Electronic supplementary material is available at http://dx.doi.org/10.
1098/rsbl.2009.0009 or via http://rsbl.royalsocietypublishing.org.
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trade-offs often explored and the non-human taxa in
which they have been studied may have little to do
with the important trade-offs that have affected
females during human evolution (Hawkes & Paine
2006). For these reasons, I applied quantitative
genetic techniques to explore female life-history
trade-offs in a population of rhesus macaques
(Macaca mulatta).

The clearest set of trade-offs for female primates
are between current reproduction and survival or,
more generally, current and future reproduction. The
primate emphasis on extended juvenility, long lifespan
and reduced reproductive rate implies that much of
their ability to attain high fitness depends on their
continued survival from year to year (Martin 1990;
Kappeler & Pereira 2003). More than 90 per cent of
variation in lifetime number of offspring in female
rhesus macaques is explained by adult lifespan
(figure 1). Simple demographic models of primate
life histories also demonstrate that lifetime fitness
(l, finite rate of increase) is most responsive to
changes in adult survival rates (Heppell et al. 2000).

Trade-offs between current reproduction and
survival or future reproduction may act over a variety
of time scales. If costs of reproduction have long-term
additive or multiplicative consequences, it is compari-
sons of distant life-history events that will reveal trade-
offs (Rose & Charlesworth 1994). Indeed, Williams’s
(1957) antagonistic pleiotropy theory of ageing
hypothesizes the existence of trade-offs mediated by
loci having opposing fitness effects on these early and
late life-history variables. Genetic correlations between
the variables can be used to index these pleiotropic
effects and assess the strength of proposed trade-offs.
This model has received broad support in experi-
mental investigations and some naturalistic studies
(Charlesworth 1994; Hughes et al. 2002).

I focus on the relationship between adult survival
and female age of first reproduction (AFR)—a
key early life-history variable for female primates
(Bercovitch & Berard 1993; Charnov & Berrigan
1993; Altmann & Alberts 2005). Furthermore, female
AFR is known to be heritable in the study population,
making genetic covariance with other life-history traits
plausible (Blomquist 2009). A life-history trade-off
will be indicated by a positive relationship between
AFR and adult survival, because when all other
factors are held constant, decreasing AFR will
increase lifetime fitness (Roff 2002).
2. MATERIAL AND METHODS
I used individual life-history data from a large population of free-
ranging rhesus macaques that were transplanted to the 15.2 ha
island of Cayo Santiago, Puerto Rico from India in 1938. Monkeys
are fed commercial monkey chow and provided water ad libitum
but forage on natural vegetation and live in naturally formed social
groups (Rawlins & Kessler 1986).

Age of first reproduction (AFR) and survival rates from AFR to
four different ages were measured (11, 16, 21 and 26 years). Data
were selected to ensure precision of age estimates, omit potentially
pathological individuals and avoid biasing survival rates to older
ages by including recent birth cohorts in which only young
individuals could have died (see the electronic supplementary
material for details of data selection and analysis). Pearson’s
correlations among the life-history variables were calculated in R
(R Development Core Team 2007).

Quantitative genetic analyses used univariate and bivariate
‘animal models’ (Kruuk 2004), relying on a large pedigree of the
study population, which included paternities determined by
This journal is q 2009 The Royal Society
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Figure 1. Regression of lifetime number of offspring
on lifespan for female rhesus macaques at Cayo
Santiago ( p!0.0001, R2Z0.91). Small random deviations
(jittering) are added to number of offspring to expose
overlapping points.

Table 1. Phenotypic (rP), genetic (rA) and residual (rR)
correlations between female age of first reproduction (AFR)
and adult survival rates to age x (sx). Standard errors are
given in parentheses and p-values in italics below the
correlation (*p!0.10, **p!0.05, ***p!0.01).

s11 s16 s21 s26

rP 0.1094* 0.1323** 0.1008 0.0834
0.065 0.032 0.141 0.288

rA 0.5900* 0.5945*** 0.4763*** 0.7062**
(0.320) (0.215) (0.170) (0.283)
0.067 0.006 0.006 0.013

rR 0.0229 K0.0281 K0.0234 K0.0231
(0.063) (0.068) (0.082) (0.076)
0.716 0.680 0.775 0.761
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microsatellite variation (Nurnberg et al. 1998). Additive genetic
and residual (co)variance components and their standard errors
were estimated in VCE 5.1 (Groeneveld & Kovac 1990). These are
reported as genetic or residual correlations and heritabilities. The
significance of a correlation or heritability from zero was tested by
comparing the ratio of the value and its standard error to a
t-distribution with degrees of freedom equal to the number of
observations (Kruuk et al. 2000). Where multiple heritability
estimates were available, their mean is reported in table 1.
3. RESULTS
Phenotypic correlations between AFR and each
survival rate are all positive but very weak (range:
0.083–0.132). The largest of these correlations are for
the younger survival rates (11 and 16 years) and both
are statistically significant or nearly so (table 1). The
implications of these small positive correlations are
that any trade-off between early reproduction and
survival is very weak and may only affect survival over
the first decade after maturation.

Quantitative genetic analysis indicates modest herit-
abilities of AFR and survival rates (0.128–0.386). All
of these are significantly greater than zero except the
smallest, for survival to age 11 (table 2). Genetic
correlations are all large and positive (0.476–0.706),
indicating a strong trade-off between age of first
reproduction and later life survival (table 1). None of
the residual correlations between AFR and survival
rates are significant, although most of them are weakly
negative, implying that environmental effects that
promote early maturation will raise later life survival.
It is this combination of strong positive genetic
correlations and weak negative residual correlations
that results in the weak positive phenotypic values.
4. DISCUSSION
The strong positive genetic correlation between
female AFR and adult survival identifies an important
genetically mediated constraint on the reproductive
decision making of female primates. Heavy invest-
ment in offspring production early in life imposes
a cost of reduced lifespan for female macaques.
Biol. Lett. (2009)
Using the estimated genetic variances and covariances
of AFR and survival rate to age 16, the cost of
maturing 1 year earlier is a loss of approximately 11
months of adult life (see the electronic supplementary
material). The weaker phenotypic pattern may result
from variation in resource abundance or psychosocial
stress, which causes earlier maturation and higher
survival or later maturation coupled with reduced
survival (van Noordwijk & de Jong 1986; Roff &
Fairbairn 2007).

While there are a number of phenotypic studies
that have suggested associations between early repro-
duction and longevity in humans (Le Bourg 2007),
the only previous estimate of a genetic correlation
between AFR and indicators of lifespan or survival
for any primate is from pre-industrial Finns (Pettay
et al. 2005). The correlation reported was also
strongly positive, but it should be regarded
with caution because AFR had a non-significant
heritability. The macaque results are consistent with
this single human estimate. However, AFR in Finns
was strongly influenced by maternal effects, while
these are very small for female macaques (Blomquist
2009). An intriguing interpretation of this difference is
that humans have evolved mechanisms to circumvent
life-history trade-offs that are expressed in other female
primates, possibly through the deliberate control and
redistribution of resources within social groups, per-
haps along kin lines, that results in the extension of
parental effects to later ages (Cheverud & Moore
1994; Hawkes et al. 1998; Kaplan & Robson 2002;
Lee 2008). Similar investigations of human groups
under different subsistence modes and residence
system may resolve this question (Marlowe 2005;
Quinlan 2008).

Cayo Santiago is part of the Caribbean Primate Research
Center (CPRC), which is supported by the University of
Puerto Rico, Medical Sciences Campus and the National
Institutes of Health. The genetic database from which
paternity data were provided was originally created by
J. Berard, F. Bercovitch, M. Kessler, M. Krawczak,
P. Nürnberg and J. Schmidtke. The National Science
Foundation, Harry Frank Guggenheim Foundation,
University of Berlin, Deutsche Forschungsgemeinschaft,
Medizinische Hochschule Hannover, NIH and CPRC
funded the creation of the genetic database. Additional
funding for this research came from the University of
Illinois Graduate College. M. Gerald, J. Cant, T. Kensler,
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Table 2. Descriptive statistics, coefficients of additive genetic variation (CVA) and heritabilities (h2) of female life-history
traits. The p-values are for tests of the null hypothesis h2Z0.

n range mean s.d. CVA h2Gs.e. p-value

AFR 1067 3–6 4.27 0.5728 0.91 0.1285G0.034 !0.001
s11 286 0.28–1 0.82 0.2192 0.74 0.1279G0.094 0.177
s16 264 0.19–1 0.69 0.2630 2.58 0.2627G0.092 0.005
s21 214 0.15–1 0.58 0.2683 4.67 0.3861G0.121 0.002
s26 164 0.12–1 0.45 0.2369 3.86 0.3206G0.106 0.003
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B. Hallgrı́msson and J. Turnquist were all helpful resources
while working with CPRC materials. A. Figueroa,
E. Davila and E. Maldonado must be credited for the
completeness and upkeep of the demographic records on
Cayo Santiago. S. Leigh, P. Garber, C. Roseman,
R. Stumpf and J. Cheverud all provided helpful insights
into this project. The comments of three anonymous
referees improved the manuscript.
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