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Abstract
Objectives: Ratios of weight to height, especially body mass index (BMI = kg/m2),

are often used in epidemiological and genetic studies of health, but the limitations of

quantitative genetic analysis of ratios are not widely known. The heritability of these

ratios can be closely approximated from a bivariate quantitative genetic model of

weight and height which clarifies how BMI heritabilities change.

Methods: I explored this bivariate approximation and alternative measures through

simulated datasets fit with linear mixed models. Simulated data were based on pub-

lished heritabilities and other statistics for BMI and related anthropometric dimen-

sions from four human samples.

Results: Inspection of the bivariate approximation and analysis of simulated data

show the heritability of weight/height crucially depends on the phenotypic (rP) and

genetic correlations (rA) between weight and height. Changes in these correlations

can have dramatic effects on the heritability of BMI. For example, when rP � rA
heritability of BMI is reduced to 35-50% of its value when the correlations are equal.

Discussion: Increasing adiposity likely decreases the phenotypic correlations more

than the genetic correlation resulting in reduced heritability of the ratio. This con-

trasts with the commonly reported stability or increase of BMI heritability and

implies it may result from increased genetic variance in weight in obesogenic envi-

ronments. The bivariate model offers other advantages over ratios, including estimat-

ing the conditional genetic variance or heritability of weight that is unassociated with

height, which may prove useful in quantitative and molecular genetic studies.

1 | INTRODUCTION

Ratios of weight to height, or mass to stature, are widely used
in epidemiological and genetic studies of human health. This
is particularly true of the body mass index (BMI = kg/m2),
though many other possible ratios have been proposed and
used to a lesser degree (eg, kg/m, kg/m3, and m/kg1/3). BMI
is often advocated as a measure of weight or adiposity
uncorrelated with height (Heymsfield, Gallagher, Mayer,
Beetsch, & Pietrobelli, 2007). Elsewhere, animal ecologists
have used similar ratios as an index of body condition
attempting to capture muscle deposition and fat stores on a
standardized skeletal frame (Stevenson & Woods, 2006).

Ratios are also commonly used to describe morphological
shape such as limb proportions or cranial indices (Bass, 1995;
Fleagle, 2013). All of these ratios are likely to be polygenic,
complex traits having many loci scattered throughout the
genome that contribute to their phenotypic variability
(Lynch & Walsh, 1998). Enough twin and family studies of
BMI have been conducted that comprehensive meta-analyses
of the heritability, the ratio of additive genetic to phenotypic
variance (h2 = VA/VP), of BMI are available (Elks et al.,
2012; Min, Chiu, & Wang, 2013). More recently, tremendous
attention has been placed on identifying molecular variants
contributing to this heritability of BMI (Goodarzi, 2018;
Locke et al., 2015; Loos & Yeo, 2014; Visscher et al., 2017).
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While there are many critiques of BMI as a measure of
obesity (eg, Müller, Bosy-Westphal, & Krawczak, 2010;
Prentice & Jebb, 2001) and its application across human
populations (Diverse Populations Collaborative Group,
2005), there has been little appreciation of the assumptions
BMI introduces as a ratio or to alternative methods for
genetic analysis of weight for a given height. Many prob-
lems with ratios are well-known to statisticians who have
often expressed reservations about ratio analysis (Atchley,
Gaskins, & Anderson, 1976; Curran-Everett, 2013; Jack-
son & Somers, 1991). However, consequences for quantita-
tive genetic or genetic association studies have not been
explored in any detail outside of the animal breeding litera-
ture. Early work showed that the heritability of a ratio could
easily be predicted from statistics for the numerator and
denominator variables with a first-order Taylor series
approximation attributed to Pearson (1897). However, this
ratio heritability was not useful in predicting evolutionary
response to artificial selection (Gunsett, 1987; Sutherland,
1965; Taylor, 1959).

The approximation, as given by Sutherland (1965) but
adapted to the weight/height ratio, is

h2wt=ht =
h2wtC

2
wt + h2htC

2
ht−2rAhwthhtCwtCht

� �

C2
wt +C2

ht−2rPCwtCht
� � , ð1Þ

where h2 is the trait heritability with h simply being their
square roots, C is the trait coefficient of variation (variance/
�x2), rA is the additive genetic correlation, and rP is the phe-
notypic correlation. When multiplied by the squared ratio of
their means (�xwt/�xht)

2, the numerator and the denominator of
Equation (1) are the additive genetic variance and pheno-
typic variance, respectively, of the weight/height ratio. Note
that heritability of weight/height and height/weight is identi-
cal. However, the heritability of BMI cannot be approxi-
mated from these raw variables' statistics. It will be very
strongly correlated with this predicted weight/height herita-
bility (see below) and could be approximated directly if
height2 is used as the denominator trait. Often, rA and rP are
similar in sign and magnitude but they are not equivalent
(Searle, 1961). Instead, they are related by the following
equation where rR is the residual correlation:

rP = rAhwthht + rR 1−h2wt
� �1=2

1−h2ht
� �1=2

: ð2Þ

While the heritability of BMI, weight, and height are fre-
quently estimated, they are rarely treated in a multivariate
framework such that rA or even rP is reported (cf., Elks
et al., 2012). This is unfortunate given the crucial role these
correlations play in determining the heritability of weight to
height ratios. Because both correlations are positive in

realistic circumstances, larger correlations will decrease
genetic variance and the phenotypic variance of the wei-
ght/height ratio. The effect on the heritability of this ratio
depends on the magnitude of the correlations and geometric
mean of the heritabilities (rPv�rAhwthht). The outcome is
explored here through analysis of some simulated data under
a range of different correlations with fixed coefficients of
variation and heritabilities for weight and height.

The importance of these correlations requires more
detailed exploration of how they influence heritability of
BMI in human datasets. It also points to considering alterna-
tive metrics for assessing the genetic variance of weight for
a given height. A simple methodological alternative to BMI
and other ratios is a univariate model to estimate heritability
of weight, using height as a covariate which should account
for phenotypic variation in height among the measured indi-
viduals. Conceptually, this is akin to analyzing the residuals
from regression of weight on height. The estimated heritabil-
ity of this residual weight has a numerator and a denomina-
tor reduced by the phenotypic variation associated with
height. However, because of the reliance on phenotypic
association between weight and height, the resulting herita-
bility will be strongly influenced by rP, just like heritability
of BMI or other weight-height ratios.

A second alternative is the conditional heritability of weight
which is defined as the fraction of phenotypic variance in weight
(VP,wt) that is due to additive genetic variance in weight indepen-

dent of height: h2wtjht = VA,wt−CovA wt,htð Þ2=VA,ht
h i

=VP,wt,

where VA is the genetic variance and CovA(wt,ht) is the
genetic covariance between weight and height (Hansen,
Armbruster, Carlson, & Pelabon, 2003; Jensen et al., 2003).
These must be estimated in bivariate quantitative genetic
models for weight and height. Comparison of these alterna-
tives to weight/height heritability or BMI heritability is
explored through simulated datasets below.

2 | METHODS

I used the GAW10 pedigree (MacCluer, Blangero, Dyer, &
Speer, 1997; http://solar-eclipse-genetics.org/) in a series of
simulations to explore the heritability of BMI and the wei-
ght/height ratio. The pedigree contains 1497 people in
23 extended families of up to 4 generations having 37-128
people in each family. I generated data for all pedigree mem-
bers with the phensim() function from the pedantics package
in R. Trait means, variances, and correlations were taken
from four literature sources to capture the common range of
height and weight heritabilities (Bastarrachea et al., 2007;
Byars, Ewbank, Govindaraju, & Stearns, 2010; Choh, Gage,
McGarvey, & Comuzzie, 2001; Coady et al., 2002;
Jelenkovic, Poveda, & Rebato, 2011; Jelenkovic & Rebato,
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2012). These observed values were used to parameterize
simulations across a range of possible genetic and pheno-
typic correlations, while keeping the means, heritabilities,
and phenotypic variances fixed (Table 1). Height and weight
were measured by medical professionals in each sample (ie,
not self-reported). Phenotypes were simulated with genetic
and phenotypic correlations on a grid of possible positive
values from .05 to .95. Many pairings implied residual corre-
lations outside the −1 to 1 range and were dropped. The
remaining 928 simulated datasets (185-271 for each study)
were analyzed with restricted maximum likelihood in
WOMBAT (Meyer, 2007) for univariate variance compo-
nents and heritabilities of height, weight, weight/height, and
BMI. The same simulated datasets were analyzed in WOM-
BAT in bivariate models for the trait variances and covari-
ances that can be reformulated as heritabilities, genetic and
phenotypic correlations, and conditional heritabilities. Sex-
specific means were the only fixed effects in the WOMBAT
models, and the additive genetic breeding value linked to the
pedigree was the only random effect (Kruuk, 2004; Wilson
et al., 2010). The only exception was a set of univariate
models that included sex-specific z-scored height as a covar-
iate for estimating variance components of weight.

Results were explored through plots and correlations
within simulations for each study to uncover patterns. This
included comparing the univariate weight/height heritability
to that predicted by the approximation in Equation (1) from
the bivariate model's statistics. I also compared the BMI her-
itability to the approximated weight/height heritability by
analysis of covariance (ANCOVA) using population as a
categorical variable and testing for population differences in
the slope of the BMI heritability regression. P values are
reported to assist interpretation, but these are dependent on
the number of simulations run. The influence of changing rA
or rP was assessed by plotting these against one another and
examining the heritability of BMI, the heritability of weight
adjusted by height as covariate, or the conditional heritabil-
ity of weight. The difference in correlations (rA – rP) was

also used in some correlations or plots. Smoothed surfaces
were also created by linear interpolation with the interp()
function from the Akima package. Simulated data and
R code for analysis are available as Data S1.

3 | RESULTS

The univariate model heritability of weight/height and BMI
are predicted very precisely from the bivariate approxima-
tion in Equation (1). Pearson's correlations within study sets
are very high (weight/height range: 0.98-0.99, BMI range:
0.92-0.96). The BMI heritability is linearly related to the
weight/height heritability but reaches more extreme values.
The slope of the regression is ≈1.6 (range: 1.55-1.67) and
does not differ significantly among study simulation sets
(P = 0.10). However, the intercept does differ among studies
because of variation in weight and height heritabilities and
CVs (Table 2).

With fixed sex-specific means and phenotypic variances for
each study, it is the covariances differing among the simulated
datasets that determine these ratio heritabilities. The highest
weight/height or BMI heritabilities are when phenotypic corre-
lations exceed genetic ones (rP > rA) and they decline linearly
as the difference rA–rP increases (Figures 1 and 2). The

TABLE 1 Phenotypic variances, heritabilities, phenotypic and genetic correlations, and sex-specific means for height and weight used for data
simulations

Height (cm) Weight (kg)

Study ♂ ♀ ♂ ♀ VP,ht VP,wt h2ht h2wt rP rA h2BMI

Massachusettsa 173.80 160.35 81.17 65.74 40.96 176.89 0.84 0.52 0.35 0.46 0.37

Samoab 170.84 160.13 90.49 89.52 33.29 318.27 0.58 0.46 0.35 0.45 0.41

Bilbaoc 175.10 160.87 80.93 61.02 37.52 104.86 0.69 0.53 0.61 0.70 0.44

Mexicod 170.40 157.00 81.65 67.19 44.44 186.78 0.77 0.34 0.39 0.42 0.36

aByars et al. (2010) and Coady et al. (2002).
bChoh et al. (2001).
cJelenkovic et al. (2011) and Jelenkovic and Rebato (2012).
dBastarrachea et al. (2007).

TABLE 2 Common slope ANCOVA predicting heritability of
BMI estimated in univariate models from the weight/height heritability
(h2wt/ht) predicted from the bivariate model statistics

β SE P

Intercepta −.367 0.009 <.001

Samoa .040 0.004 <.001

Bilbao −.001 0.005 .760

Mexico .138 0.006 <.001

h2wt=ht 1.620 0.019 <.001

aWith Massachusetts as baseline and others as deviations.
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resulting heritabilities for either ratio are almost always less
than the height heritability and are usually lower than that for
weight when genetic correlations exceed phenotypic ones
(rP < rA). Whenever the correlations are equal, both ratio heri-
tabilities are approximately equal to the heritability of weight.
Comparing this with cases of rP < rA causes large reductions in
heritability of BMI. For example, when rP + 0.5 < rA (the
lower right tail of panels in Figure 1), the mean heritability of
BMI is reduced to 35-50% of its value when the correlations
are equal, depending on the study simulation set.

Heritability of weight with z-scored height as a covariate
is also strongly correlated with heritability of BMI (range:
0.72-0.86) or the approximation from Equation (1) (range:
0.63-0.77). Conditional heritability of weight is strongly cor-
related with BMI heritability (range: 0.78-0.93), the approxi-
mation in Equation (1) (range: 0.71-0.89), or heritability of
weight with height as a covariate (0.58-0.82). However,
there are important systematic differences among these three
metrics poorly captured by pairwise, linear correlations. In
particular, the conditional heritability of weight is only
affected by changes in the genetic correlation and is not
influenced by the phenotypic correlation. The BMI heritabil-
ity and heritability of weight with height as a covariate are
both affected by change in either correlation. Indeed,

controlling for variation in the genetic correlation, the partial
correlation between BMI and conditional heritability of
weight is much smaller (range: 0.33-0.57). In contrast, con-
trolling for variation in the phenotypic correlation, the partial
correlation between BMI and conditional heritability of
weight always increases (range: 0.94-0.97).

Graphically, this can be seen in the smooth decline of the
conditional heritability of weight with increasing rA indepen-
dent of rP (right column, Figure 2) as a plane angled only
along the x-axis. Heritability of BMI has a more complex
dependence on the correlations. It has a peak with highest pos-
sible values of rP and low rA values and declines most steeply
as rA increases and rP decreases (left column, Figure 2). Heri-
tability of weight with z-scored height as covariate has an even
more complex relationship with the correlations. It is highest
with highest possible values of rP and low to moderate rA.
Like heritability of BMI, it declines with increasing rA and
decreasing rP, but then it increases again at low values of rP
and moderate to high rA (center column, Figure 2).

4 | DISCUSSION

I have shown through a set of simulations based on literature
values that the heritability of the weight/height ratio or BMI

FIGURE 1 Estimated heritability of BMI compared to the difference in genetic (rA) and phenotypic (rP) correlations for the four study sets of
simulations. Dotted and dashed horizontal lines indicate the height and weight heritabilities, respectively
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is well approximated by Equation (1). All terms of the equa-
tion can be estimated from a bivariate quantitative genetic
model for weight and height (or weight and height2). More

importantly, the bivariate model offers more information on
how height and weight are related to one another genetically
and phenotypically and can be used for any dataset, a BMI

FIGURE 2 Surface plots of univariate BMI heritability (left column), heritability of weight with height covariate adjustment (center), and
conditional heritability of weight (right) over the range of genetic correlations (x-axis) and phenotypic correlations (y-axis) for the four study
samples (rows). Greens are lowest values; pink and white are the highest values
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heritability might be estimated. The approximation from
Equation (1) or a univariate model for BMI heritability
should provide similar results. However, simulation results
also demonstrate the complex dependence of BMI heritabil-
ity, or the heritability of weight when using height as a
covariate, on the phenotypic correlation and genetic correla-
tion between weight and height.

The same bivariate quantitative genetic modeling approach
could be taken with other commonly used anthropometric indi-
ces in obesity research, such as waist-hip or waist-height ratio.
This may be biomedically important because these indices are
better predictors of mortality than BMI in many cases
(Kodama et al., 2012; Rost et al., 2018). Elsewhere, the abun-
dant psychological and anthropological literature on second to
fourth digit ratio could also be enhanced by direct assessment
of digit lengths in a bivariate genetic model (Manning, 2002).
This would be particularly advantageous as digit ratio has
recently been shown an inadequate size-standardization, though
raw digit lengths should still reflect hormone exposure during
growth (Lolli et al., 2017). In contrast to the preponderance of
ratios in these fields, the most comprehensive study of the evo-
lutionary genetics of primate limb proportions includes com-
plete phenotypic covariance and genetic covariance matrices
and means for all major limb elements in several species
(Hulsey, 2016). These can easily be transformed with Equa-
tion (1) into heritabilities of well-known limb indices (eg, cru-
ral, brachial, and humerofemoral). Moreover, they allow
precise description of the phenotypic and genetic integration of
limb element lengths. Similarly, construction and analysis of
dental ratios by Hlusko, Schmitt, Monson, Brasil, and Mahaney
(2016) rely on prior detailed description of phenotypic covari-
ance and genetic covariance (Hlusko & Mahaney, 2009).

The influence of the weight-height phenotypic correlation
on the heritability of BMI complicates its use as a measure
of genetic variation in weight independent from height. Rec-
ognition of the influence of phenotypic correlations helps
explain some results on the genetics of BMI. Many studies,
including all those used in the simulations, report a des-
cending series of height > weight > BMI heritability. BMI
heritability is lowest due to genetic correlations exceeding
phenotypic correlations, a very common pattern for morpho-
logical traits (Cheverud, 1988; Roff, 1995; Searle, 1961;
Vattikuti, Guo, & Chow, 2012). Pleiotropic effects on height
and weight are likely to be frequent because any vertical
increase/decrease in skeletal frame will also affect weight.
Environmental effects may perturb similar developmental
pathways resulting in positive residual correlations, but they
can also be quite distinct for each trait. In particular, envi-
ronmental factors related to variation in adiposity (eg, physi-
cal activity, and smoking) are much less likely to be
associated with changes in skeletal dimensions, resulting in
lower phenotypic correlations.

An identical complaint could also be made against using
height as a covariate to adjust heritability estimates for weight.
However, this method is further complicated by unintuitive
increase in heritability of weight when phenotypic correla-
tions are very low. Because simulated phenotypes were con-
strained to have positive genetic correlations and phenotypic
correlations, this region of increase in heritability of
covariate-adjusted weight is due to negative residual correla-
tions. Whether this is empirically relevant is unclear because
there are very few published estimates of genetic and pheno-
typic correlations between height and weight. All four studies
in Table 1 have positive residual correlations. However, it is
biologically plausible there could be environmental triggers
that would cause increased muscle or fat deposition at the
expense of height growth or vice versa, and they would vary
within populations. Early life stressors that have long-term
effects on neuroendocrine control of appetite, satiety, and
activity are obvious candidates (Charmandari, Kino, Sou-
vatzoglou, & Chrousos, 2003). Ideally, phenotypes should be
treated as phenotypes in a multivariate framework to accu-
rately describe the genetic correlations and residual correla-
tions rather than as covariates where a phenotypic regression
reduces the genetic variance and residual variance by
unknown amounts in a single modeled phenotype.

Changing BMI genetics can also be better contextualized
through the bivariate model. Higher frequency of obesity has
been associated in some studies with increased heritability of
BMI or elevation of the effect of candidate loci (Albuquerque,
Nóbrega, Manco, & Padez, 2017; McCaffery, Papandonatos,
Bond, Lyons, & Wing, 2009). As increasing adiposity should
diminish the phenotypic correlation between height and
weight more than it reduces the genetic correlation (a shift to
the right in Figure 1), the reported increases in BMI heritabil-
ity must be due to relative increase in the genetic variance of
weight. This genotype × environment interaction may reflect
expression of cryptic genetic variance in novel obesogenic
environments (Paaby & Rockman, 2014). In other cases, heri-
tability of BMI is reported to remain stable despite increase in
mean and phenotypic variance (Silventoinen et al., 2017).
While this necessarily results from proportional changes in
the genetic and residual variance in BMI, it could be accom-
plished through a variety of changes in the heritability of
weight, heritability of height, or the phenotypic and genetic
correlation between them. Following the speculation above, a
stable BMI heritability could result from a phenotypic correla-
tion reduced more than the genetic correlation offset by com-
pensatory increase in the genetic variance. Distinguishing
among alternatives would be simple in the bivariate model.

Genotype × sex or genotype × age interactions may also
influence heritability of BMI. Adult sex differences in the phe-
notypic correlation between height and weight have been
noted in some samples (eg, Micozzi, Albanes, Jones, &
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Chumlea, 1986). Given the frequency of measurement in
many biomedical studies, this is unlikely to be due entirely to
inadequate controls for pregnancy and lactation. All else being
equal, this should increase the denominator of Equation 1 and
thereby depress the heritability of BMI in females. Without
implementing a bivariate model of height and weight for each
sex (Stearns, Govindaraju, Ewbank, & Byars, 2012), reported
sex differences in the heritability of BMI could result from this
or other component changes (Schousboe et al., 2003).

Heritability of height, weight, and BMI all typically
increase from infancy to adulthood (Dubois et al., 2012). The
contribution of changing variances vs correlations to the tra-
jectory for BMI is currently unknown. Phenotypic correla-
tions between height and weight are low at birth, rise through
childhood and adolescence, and then fall again to modest
values during adulthood (Tuddenham & Snyder, 1954). There
may be a distinct advantage to this bivariate approach when
analyzing height and weight across a large range of ages
because both have theoretically justified nonlinear growth
models that are commonly used (Hauspie, 1989). BMI has a
complex age-specific pattern with no theoretical model
(WHO Multicentre Growth Reference Study Group, 2006).
There may be more mundane advantages, such as the less
skewed distributions of height and weight compared to BMI.

Changes across adulthood in BMI heritability could also
be related to changing correlations between height and
weight, though these are rarely reported (Nan et al., 2012;
Ortega-Alonso, Sipilä, Kujala, Kaprio, & Rantanen, 2009).
Average BMI often increases in older adults but then
declines in advanced old age, which suggests changing
physiology of weight maintenance and opportunities for
changes in its genetic variance and the covariance between
weight and height (Rissanen, Heliövaara, & Aromaa, 1988).
Moreover, evolutionary theories of aging all posit increasing
genetic heterogeneity in late life (Charlesworth & Hughes,
1996; Kirkwood, 2017), but how this manifests in aged
cohorts likely varies among phenotypes and will be strongly
dependent on earlier mortality loss (Grafen, 1988).

The conditional heritability of weight is a metric more
appropriate than heritability of BMI for describing polygenic
effects on weight that are independent of height. It is simple
to calculate from the results of bivariate or multivariate
models. Precision of the conditional heritability or condi-
tional genetic variance is easiest to compute by combining
the Bayesian posterior distributions of the component terms
(Boerner & Tier, 2016; Hadfield, 2010). The delta method
can also be used with maximum likelihood estimates, pro-
vided the sampling (co)variances of the genetic covariance
matrix are available (Hansen et al., 2003). Regardless of
whether authors choose to compute conditional heritabilities,
the simulation results and Equation (1) show the importance

of reporting the phenotypic correlation and genetic correla-
tions between height and weight.

Molecular studies will refine the polygenic information in
the conditional heritability. Multi-trait genome-wide associa-
tion study (GWAS) (Porter & O'Reilly, 2017; Zhou & Ste-
phens, 2014) can offer richer understanding of the pleiotropic
and independent effects of molecular variants on weight,
height, and other commonly collected anthropometric and
metabolic traits, though they require much larger samples to
achieve adequate power. The inclusion of height, weight, and
other direct measurements in such analyses is well-justified,
while BMI and other anthropometric ratios will remain prob-
lematic (Ried et al., 2016).
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